3.4. Генераторы линейного изменяющегося напряжения (ГЛИН)

Генератор линейного изменяющегося напряжения (ГЛИН) — импульсное устройство, в выходном напряжении которого имеется участок линейно изменяющийся во времени.

Напряжение может меняться периодически. В этом случае ГЛИН называется генератором пилообразного напряжения (ГПН) или генератором напряжения треугольной формы (рисунок 3.4.1, а, б).

Рисунок 3.4.1 Формы сигналов ГЛИН

Если напряжение меняется от минимального значения к максимальному (по абсолютной величине), то его называют линейно-нарастающим напряжением.

Если меняется от максимального значения к минимальному - линейно-падающим (рисунок 3.4.2).

Рисунок 3.4.2 Линейно изменяющееся нарастающее напряжение

В состав ГЛИН могут входить транзисторные ключи, компараторы, усилители и т.д.

Схемы ГЛИН могут работать в 3-х режимах:

  1. с внешним возбуждением, в ждущем режиме;
  2. автоколебательном режиме.

Различают три способа создания ГЛИН:

1) с повторительной обратной связью – это введение некоторого компенсирующего напряжения в цепь заряда емкости;

2) со следящей обратной связью - введение напряжения компенсации, равное;

3) использование системы типа интегратора.

ГЛИН строятся на принципе заряда и разряда конденсатора.

Схема простейшего ГЛИН, работающего по принципу заряда конденсатора, показана на рисунке 3.4.3, а.

Она состоит из времязадающего конденсатора С, резистора Rк и транзисторного ключа VT1. На вход транзисторного ключа подается последовательность прямоугольных импульсов с заданным интервалом между импульсами и длительностью (рисунок 3.4.3, б). Когда на базе транзистора нулевое напряжение (промежуток времени между импульсами), транзистор закрыт и происходит заряд конденсатора через резистор Rк

Рисунок 3.4.3. Схема простейшего ГЛИН (а) и его временные диаграммы (б)

Если постоянная времени цепи RкC достаточно большая, т.е. существенно больше периода следования прямоугольных импульсов, напряжение на конденсаторе нарастает линейно. Заряд конденсатора Uc продолжается до поступления импульса, открывающего транзистор VT. Когда транзистор открывается, начинается процесс разряда конденсатора. Интервал времени между отпирающими импульсами должен быть достаточным для полного разряда конденсатора.

ИЛИ

Принцип получения пилообразного напряжения заключается в медленном заряде (или разряде) конденсатора через большое сопротивление во время прямого хода и в быстром его разряде (или заряде) через малое сопротивление во время обратного хода. В упрощенном виде это показано на рисунке 3.4.4

Рисунке 3.4.4 Принцип получения пилообразного напряжения

Конденсатор С заряжается при разомкнутом ключе К через резистор Rз, а разряжается при замкнутом ключе К через резистору Rр.

Такая схема не позволяет получить напряжения высокой линейности, поскольку повышение напряжения на конденсатор уменьшает зарядный ток. Для получения линейного напряжения конденсатора необходимо заряжать постоянным во все время заряда током (рисунок 3.4.5)

Рисунок 3.4.5 Генератор пилообразного напряжения на транзисторах

Электронный ключ собран на транзисторе VT1 и управляется импульсами положительной полярности, транзистор VT2 - эмиттерный повторитель - является следящей связью. В исходном состоянии, когда на входе отсутствует прямоугольный импульс (рисунке 3.4.6), транзистор VT1 закрыт и конденсатор С3 заряжается. Ток заряда все время остается постоянным, т. к. напряжение на верхнем выводе R2 следит за напряжением на конденсаторе С3 на его нижнем выводе. Диод VD1 закроется и в течение всего времени дальнейшего формирования линейного нарастания напряжения будет закрыт. Формируется рабочий ход пилообразного напряжения.

Рисунке 3.4.6 Формирование прямого и обратного хода

При воздействии входного импульса транзистор VT1 открывается и конденсатор С3 быстро через него разряжается. Формируется обратный ход пилообразного напряжения. В это время конденсатор С2 подзаряжается до своего первоначального значения.